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AN INDUCTIVE SCHEMA FOR COMPUTING CONJUGACY CLASSES 
IN PERMUTATION GROUPS 

GREG BUTLER 

ABSTRACT. An approach to computing the conjugacy classes of elements of large 
permutation groups is presented in detail, and a prototype implementation is 
described. The approach builds on recent efficient algorithms for computing 
conjugacy classes of p-groups, and for computing Sylow subgroups of large 
permutation groups. Classes of elements of composite order are determined by 
recursively analyzing quotients of centralizers of p-elements. 

1. INTRODUCTION 

The conjugacy classes of elements are an important piece of information 
about the structure of a group. As such, it is a prerequisite for many algorithms 
such as those for computing the lattice of subgroups, the automorphism group, 
and the character table. 

For large permutation groups, it has been feasible to attempt the computa- 
tion of the conjugacy classes ever since the development [1, 20] of algorithms 
to compute centralizers and to test conjugacy of two elements. However, to 
date, there has been no systematic way of finding the class representatives. The 
state-of-the-art has been to consider randomly chosen elements, often several 
thousand such elements, and often with failure to locate a representative of 
every class. 

The systematic approach presented here was first suggested to us by Sims in 
1976 in discussions on this problem. The idea is implicit in many papers on 
the-classification of finite simple groups. Given a group G, we consider each 
prime p dividing the order of G in turn. The classes of elements of order pr, 

for all possible values of r, are determined by computing a Sylow p-subgroup, 
analyzing its classes, and then determining their fusion in G. The classes of 
elements of composite order prt, where t is coprime to p, are determined 
by computing the centralizer CG(z), for each class representative z of order 
pr, and analyzing the classes of the centralizer, or the classes of the centralizer 
modulo a normal p-subgroup such as (z). For permutation groups, there is a 
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natural quotient of the centralizer given by its action on the cycles of z . Again, 
the fusion of these classes in G must be determined. 

The major contributions of this paper are 
* a new theoretical result, Theorem 5.1.1, which eliminates conjugacy 

testing when determining the classes of elements of composite order; 
* a strategy to process the primes in an appropriate order and restrict the 

composite orders to those involving only certain primes; 
* a framework for the overall computation so that the existing theory and 

ad hoc hand methods can be applied by a computer; 
X a prototype implementation in Cayley, v3.7 [8] to demonstrate the fea- 

sibility of the computer application of the inductive schema, and to 
identify the computational bottlenecks. 

A study of the complexity of the problem is not included. It is difficult to 
see how the computation of the conjugacy classes could avoid the computation 
of centralizers, or testing whether two elements are conjugate. The complexity 
of these simpler problems is still open [1 3]. 

The implementation of the approach has been made possible by recent pro- 
gress [7] in computing Sylow subgroups of large permutation groups; in con- 
verting the representation of a p-group from a permutation group to a pc pre- 
sentation [4, 6, 14]; and in computing the conjugacy classes of elements of a 
p-group given by a pc presentation [9]. 

The prototype implementation computes the 116 classes of PSL(5, 3) of 
degree 121 and order 237,783,237,120 = 293105 11213 in 14 minutes on a Sun 
Sparcstation, and computes the 60 classes of Conway's second sporadic simple 
group Co2 of degree 2300 and order 42,305,421,312,000 = 21836537 11 23 in 
2.5 hours. 

The paper continues by presenting the necessary background on conjugacy 
classes and on computational group theory, and then describing the inductive 
schema in overview. The following sections then discuss the theory, algorithms, 
and present examples, for each of the major subproblems. The prototype imple- 
mentation is described and some experimental results presented. Opportunities 
for further work are discussed before concluding the paper. 

2. BACKGROUND 

This section presents the necessary background notation, definitions, and 
computational tools which we will need. The reader is referred to [12, 22] for 
elementary definitions and results from group theory. The engineering aspects 
of developing and implementing the algorithm require some appreciation of 
what can be done cheaply, or not so cheaply, using the current state-of-the-art 
algorithms for subtasks. 

Let G be a finite group. Let g be an element of G. Let KG(g) de- 
note the conjugacy class {h-1gh I h E G} of g in G, and define KrG(g) = 

U(z)=(g) KG(z) to be the rational class of g in G. The rational class is a dis- 
joint union of conjugacy classes KG(gm'), for certain integers mo= 1, m1 , .... 
ms between 1 and the order of g. The length of each conjugacy class is de- 
termined by the centralizer CG(g), and the integers mi are determined by the 
structure of the abelian group NG((g))/CG(g). 
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Define the Galois group, GalG(g), of g E G to be the subgroup of Aut((g)) 
isomorphic to NG((g))/CG(g). The classes within the rational class KrG(g) 
are in 1-1 correspondence with the cosets of the Galois group, GalG(g), in the 
automorphism group, Aut((g)). 

Consider the structure of the automorphism group of a cyclic group Zn of 
order n. 

Proposition 2.0.1 ([16, Satz 13.19, page 84]). (1) Aut(Zn) is isomorphic to the 
multiplicative group of Z/nZ/. 

(2) If ni = nIn2 ... n1 with the ni pairwise coprime, then 

Aut(Zn ) Aut(Z,, ) x Aut(Z12 ) x .. x Aut(Znl ). 

(3) For p > 2, Aut(Zpr) is a cyclic group of order pr-l(p -1) . 
(4) For r > 3 

Aut(Z2r) - Z2r-2 XZ2 

and we can take 5 mod 2r and -1 mod 2r as generators of the respective 
direct factors. 

(5) Aut(Z4) Z2, and Aut(Z2) is the trivial group. E 

Let cg denote the obvious isomorphism between Aut((g)) and the mul- 
tiplicative group of Z/nZ, where n = jgl. Hence, 8g(GalG(g)) is a sub- 
group of the multiplicative group of Z/nZ. If x e NG((g)) or x is a coset 
in NG((g))/CG(g), then Cg(x) will denote the corresponding element of 
leg(GalG(g)). If n = qt, where q and t are coprime, then Aut(Z,) 
Aut(Zq) x Aut(Zt). Hence, there is a projection In from the multiplicative 
group of Z/nZ to the multiplicative group of Z/tZ. We denote the inverse 
embedding by t1. 

Corollary 2.0.1. Let S be a Sylow p-subgroup of G and let g e G have order 
pr. 

(1) For p > 2 and r > 1, regard Aut(Zp,) as Zpr-I X Z(p-l) . There exists 
g E Sn KG(g) such that Gals(gl) is the Zpr-,-component of GalG(gl) . 

(2) For p > 2 and r > 1, the Z(p-l)-component of GalG(g) projects faith- 
fully to the Z(p-1)-component of GalG( gP). 

(3) For p = 2, there exists g, E S n KG(g) such that Gals(gl) = 

GalG(g1) * ? 

For cases (1) and (3) of the corollary, we may take g1 E S n KG(g) such that 
Cs(gl) is a Sylow p-subgroup of CG(gl) and the normalizer Ns((g1)) is as 
large as possible. In case (2) of the corollary, if CG(g) = CG(gP), then take an 
element x E G which normalizes gP and (modulo the centralizer) generates 
the Z(p-l)-component of GalG(gP) . The generator of the Z(p-l)-component of 
GaIG(g) is a power of x. 

Proposition 2.0.2. If H < G and h E H, then GalH(h) ? GalG(h). 

Corollary 2.0.2. Let H < G, h E H and g E G such that hi - igI = n. If 
eh(GalH(h)) ? Eg(GaIG(g)), then h is not conjugate in G to g. o 
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Hence, some properties of the Galois groups, such as their order, may al- 
low one to deduce that the elements are not conjugate, and therefore avoid a 
conjugacy test. 

The inductive schema as implemented determines the rational classes of a 
permutation group G. The information it stores about each rational class in- 
cludes a representative element g; the list of powers 1, M2, ... , mS such that 
gm, are the representatives of the classes within the rational class; the Galois 
group GalG(g); and appropriate elements of NG((g)), for the case when g is 
a p-element. Hence, the schema also determines the conjugacy classes of G. 

For computational purposes, a permutation group G acting on the set of 
points Q is described by a base and strong generating set. A base for G is a 
sequence of points B = [/3l, /V, ... , 13k] in Q such that the only element in 
G fixing every point /.i is the identity element. A strong generating set relative 
to B is a set T of elements of G which contains a set of generators for each 
stabilizer Gfl,i 1 1, V 

. 1 < i < k. For more details see [18]. 
For computational purposes, a p-group is described by a power-commutator 

presentation, or pc presentation. This is a presentation of the form 

H = (a1, a2 , ... , anlaiP = ui, for 1 < i < n , [aj, aE] = Vij, 

for 1 < i <j < n), 

where the ui are words in {ai+1, a+2, ... , an} and the vij are words in 
{aj+l, aj+2, ..., anl} 

Let us begin by describing some of the more expensive computations which 
might arise as subproblems in determining the conjugacy classes. 

P1: Given a base and strong generating set for a group G, and an element 
z E G, compute a base and strong generating set for CG(z) . 

P2: Given a base and strong generating set for a group G, and two elements 
g1, g2 E G, determine whether g1 is conjugate to g2 in G, and if so, determine 
a conjugating element. 

Both of the computations P1 and P2 are generally quite efficient. However, 
the algorithms [1] are backtrack searches and are subject to combinatorial ex- 
plosion of the size of the search tree. So in bad cases, the cost could be two 
or three orders of magnitude worse than the average cost. Furthermore, if the 
determination of the conjugacy classes requires thousands of conjugacy tests, 
then the cost accumulates, and the chance of a bad case increases. Hence, a 
major aim of any approach to determining the conjugacy classes should be to 
minimize the number of conjugacy tests in the permutation group G. 

P3: Given a base and strong generating set for a group G, and a prime p 
dividing the order of G, compute a base and strong generating set for a Sylow 
p-subgroup of G. 

The algorithm [7] for P3 requires a small number of centralizer computa- 
tions, and its total cost is essentially the cost of these computations. Hence, it 
may suffer from a bad case for the centralizer algorithm. On the other hand, 
the determination of the conjugacy classes requires only one Sylow subgroup 
computation for each prime. 

The following computations can be done very efficiently. 
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P4 [3, 4, 5, 6]: Given a base and strong generating set for a group G acting 
on Q, set up any of the following homomorphisms: the action of G on an 
invariant subset A of Q ; the action of G on an invariant partition T of 
Q; for a p-group or soluble group G, the isomorphism between G and the 
group defined by a pc presentation of G. Allow the computation of the image, 
kernel, image of an element, preimage of an element, image of a subgroup, and 
preimage of a subgroup. 

P5 [9, 17]: For a p-group G defined by a pc presentation, compute any of 
the following: conjugacy classes of elements; centralizer of an element; deter- 
mine if two elements are conjugate, and if so, determine a conjugating element; 
normalizers, centre. 

The following properties can be used to decide that two elements are not 
conjugate. Hence an explicit conjugacy test in a permutation group is only per- 
formed when all the conditions (for which the information is readily available) 
have been checked. 

(1) If g1, g2 have distinct cycle structures, then they are not conjugate in 
G. 

(2) If, for some integer t, the powers gt g 92 are not conjugate in G, then 
gl, g2 are not conjugate in G. 

(3) If g1 E H and g2 E G, where H < G, such that the order of the 
centralizer CH(gl) does not divide the order of CG(g2), then g1, g2 
are not conjugate in G. 

(4) If g1 E H and g2 E G, where H < G, such that GalH(g1) is not 
isomorphic to a subgroup of GaJG(g2), then g1, g2 are not conjugate 
in G. 

3. OVERVIEW 

The main ideas behind the approach are 
* For a given prime p, a representative of each rational class of p- 

elements can be found in a fixed Sylow p-subgroup S of G. 
* Representatives of the rational classes of elements of order prt, where 

t is coprime to p, can be found in the centralizers of the rational class 
representatives of elements of order pr. 

* The rational class representatives of elements of order prt can be found 
by taking suitable preimages of the rational class representatives of ele- 
ments of order t in the quotient of the centralizer given by its action 
on the cycles of the element of order pr. 

Rational classes are determined, as this reduces the effort in computing cen- 
tralizers and analyzing the rational classes of their quotients. The rational 
classes of a Sylow subgroup S help to reduce the number of conjugacy tests 
in G, when determining the fusion in G of the S-rational classes. The Galois 
group in S helps determine the Galois group in G for p-elements, and reduce 
the number of conjugacy tests. 

The approach can treat the primes p dividing the order of G in terms of 
"increasing difficulty", so that, for the last prime, it is not necessary to analyze 
the centralizers of p-elements to find their roots. The inductive schema is 
outlined in Algorithm 1. 
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Algorithm 1 
Input: a finite permutation group G with a base and strong 

generating set; 
Output: the rational classes of G; 
begin 

let IGI pl p2.. p;nd 

for each prime pi do 
"determine the G-rational classes of p,-elements" 
S := Sylow p,-subgroup of G; 
let f: S -S, where S is defined by a pc 
presentation of S; 
compute the rational classes of S (and hence, of S); 
determine the fusion of the S-rational classes in G; 
for each rational class KrG(z) of pi-elements do 

"determine the G-rational classes of roots of z of 
order tpl, where Iz I pr and t only involves the 
primes Pi+1, Pi+2, *--, Pd 

C CG(Z); 
let f2: C -- C, the action of C on the cycles of 
z ; 
determine the C-rational classes of elements 
whose order only involves the primes Pi+i, Pi+2, 
*-- , Pd; 
lift the representatives of C-rational classes to 
roots of z and determine their conjugacy in G; 

end; 
end; 

end. 

As an example of the inductive approach, consider the group PSL(4, 2) of 
all nonsingular 4 x 4 matrices over GF(2). This group has a permutation 
representation of degree 15. Table 1 lists the information about its rational 
classes. The notations 7AB and 15AB indicate that the rational class contains 
two classes. All other rational classes contain a single conjugacy class. The 

TABLE 1. Rational classes of PSL(4,2) 

Rational Class I CG(g)l J Length ] Cycles [ Fusion 

IA 26325 7 1 I1 
2A 263 105 2417 
2B 253 210 2613 
3A 2232 5 112 35 1 - 2 
3B 2 32 1120 34 13 1 i 2 
4A 24 1260 422213 1 , 3 
4B 23 2520 432111 1 , 3 
5A 3 5 1344 53 1 - 2 - 3 - 4 
6A 223 1680 6231 1 - 5 
6B 2 3 3360 61322111 1 - 5 
7AB 7 2880 7211 1 - 2 - 4, 3 - 5 - 6 
1SAB 3 5 1344 151 1 - 2 - 4 - 8, 7 - 11 13 14 
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column headed Length gives the length of each conjugacy class. The column 
headed Fusion indicates which powers of the representative are conjugate in G. 

In Table 2 is a commentary on the execution of Algorithm 1 for this group. 
The word "class" refers to a rational class. The primes are processed in order 
from largest to smallest. The routine pelts determines the rational classes of 
p-elements in G; the routine roots determines the rational classes of elements 
of composite order which are roots of a p-element, but only for orders involv- 
ing just the smaller primes. The commentary comes from a prototype imple- 
mentation in Cayley, v3.7, so a group order such as 22325 is printed as 
SEQ(2, 2, 3, 2, 5, 1). The times refer to a Sun Sparcstation, and are rounded 
to the nearest second. 

There are several major subproblems to be solved. Problems 2 and 3 have 
technical solutions, but Problems 1 and 4 require a strategy to be developed. 

TABLE 2. Execution of Algorithm 1 for PSL(4, 2) 

Sylow 7 subgroup took 0 seconds 
pelts took 1 second, did 2 conjugacy tests, fused 1 S-class into 1 G-class 

found class 7AB 

Sylow 5 subgroup took 0 seconds 
pelts took 1 second, did 1 conjugacy test, fused 1 S-class into 1 G-class 

found class 5A 

in roots, the centralizer has order SEQ( 3, 1, 5, 1 
restriction to cycles: order SEQ( 3, 1 ) degree 3 

in quotient found image of class 15AB 
recursive treatment of quotient took 0 seconds 
in roots, the quotient has 1 class 

roots took 1 second 

Sylow 3 subgroup took 0 seconds 
pelts took 2 seconds, did 4 conjugacy tests, fused 4 S-classes into 2 G-classes 

found class 3B; found class 3A 

in roots, the centralizer has order SEQ( 2, 1, 3, 2 
restriction to cycles: order SEQ( 2, 1, 3, 1 ) degree 7 

in quotient found image of class 6B 
recursive treatment of quotient took 0 seconds 
in roots, the quotient has 1 class 

roots took i second 

in roots, the centralizer has order SEQ( 2, 2, 3, 2, 5, 1 
restriction to cycles: order SEQ( 2, 2, 3, 1, 5, 1 ) degree 5 

in quotient found image of class 6A 
recursive treatment of quotient took 1 second 
in roots, the quotient has 1 class 

roots took 1 second 

Sylow 2 subgroup took 0 seconds 
pelts took 5 seconds, did 0 conjugacy tests, fused 15 S-classes into 4 G-classes 

found class 2A; found class 2B; found class 4A; found class 4B 

Total time 17 seconds 
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Problem 1: Rational classes of p-elements. Determine the rational classes in G 
of elements of prime power order. 

Problem 2: Classes within a rational class. Determine the classes within each 
rational class KrG(g). That is, the powers ml = 1, M2, ..., m, such that 
KrG(g) is the disjoint union of the KG(gm,). 

This problem is treated in two parts (a) and (b). 

Problem (2a): For a rational class of p-elements with representative g, deter- 
mine the Galois group GalG(g). 

Problem 3: Classes of elements of composite order. Given an element z of 
prime-power order pr, determine the rational classes and classes of elements y 
where yt E KrG(z), and t is coprime to p. 

This includes 

Problem (2b): For a rational class of elements of composite order with represen- 
tative g, determine the Galois group GalG(g). 

Problem 4: Ordering the primes. Determine the order in which the primes pi 
dividing IGI should be processed. 

The following sections treat the p-elements (that is, Problems 1 and 2a), the 
elements of composite order (that is, Problems 3 and 2b), and the ordering of 
the primes. 

4. ELEMENTS OF PRIME-POWER ORDER 

This section looks at finding the representatives of the rational classes of 
elements of order pr. Determining the classes within a rational class of such 
elements is done by determining the Galois group of the element. The problems 
dealt with here are 

Problem. Determine the rational classes KrG(g), where the order of g is a 
power of p. 

Problem. Determine the classes within each rational class KrG(g), where the 
order of g is a power of p, by determining GalG(g) . 

The best we have been able to achieve for the first problem is a framework 
and strategy for finding the rational class representatives. There are examples 
where our solution takes a long time, so the problem may be regarded as still 
open. We do arrange that this strategy determines the p-part of the Galois 
group as a by-product. 

The theory for the second problem is well developed, so what is required is 
a careful organization of the theory into an algorithm. 

4.1. Theory. 

Proposition 4.1.1 [16, Hilfssatz 2.5, page 418]. Let S be a Sylow subgrotup of 
G. Suppose K and L are subsets of S such that Ks = K and Ls = L for 
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all s E S, and suppose that g E G conjugates K to L. Then there exists 
h E NG(S) such that Kh = L. w 
Corollary 4.1.1. Let p be a prime dividing the order of G. Let S be a Sylow 
p-subgroup of G. 

(1) If S is abelian, then fusion of the elements of S in G is completely 
determined by fusion in NG(S). 

(2) Fusion amongst elements of Z(S) in G is completely determined by 
NG(S). F 

Proposition 4.1.2. Let g E G be a p-element and let S be a fixed Sylow p- 
subgroup of G. Then there exists g1 E S n KG(g) such that Cs(gl) is conjugate 
to a Sylow p-subgroup of CG(g). 2 

Hence, the roots of g1 in S will contain representatives of all the G-classes 
of roots of g, where the root is a p-element. 

4.2. Algorithm for Problem 1. The rational classes of S are actually determined 
in the group S described by a pc presentation. The S-classes are computed, 
and then conjugacy tests in S are performed to determine in which class a 
power of a class representative g lies, thus calculating the rational class and 
the abelian group Gals(g). The results are lifted back to S. 

A straightforward approach to determine the G-rational classes of p-elements 
is to apply algorithms which test conjugacy in G of each S-rational class repre- 
sentative with each G-class representative found so far. However, these tests are 
too expensive, and the number of S-rational classes can be large (for example, 
several thousand rational classes for a group of order p15). 

An approach which does more analysis of the Sylow subgroup and various 
normalizers might be organized as in Algorithm 2. The analysis produces an 
order in which to treat the S-rational classes. This order is given in list. It 
also produces a corresponding sequence of sets of rational classes, called away, 
such that if the list[i]th S-rational class fuses to an S-rational class earlier in 
the order, then every member of away[i] also fuses to an earlier member of 
list. 

We take away[i] to be the set of the S-rational classes containing roots of 
the list[i]th rational class. If the representative z of the list[i]th S-rational 
class is conjugate in G to an earlier S-rational class, with representative z', 
then every root of z is conjugate to a root of z'. We order list so that the 
centralizer in S of the earliest such z' does contain a representative of each 
root of z' that is a p-element, and we list the roots of z' before z and its 
roots. 

Our current analysis categorizes the S-rational classes by the order of the 
elements, and their cycle structure (as elements of G). Within each category, 
the analysis sorts the S-rational classes in decreasing order of their centralizer 
order (so that the roots of a discarded S-rational class can be safely discarded), 
and within a centralizer order it sorts the S-rational classes in decreasing order 
of their normalizer order (so that the p-part of the Galois group in G is known). 
The first S-rational class with each distinct cycle structure is placed at the start 
of list. The remaining S-rational classes are then listed. The S-rational classes 
of elements of order p are listed using the sorted order. After a S-rational class 
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of elements of order p-with representative z and before the next S-rational 
class of elements of order p, we list the roots of z in a recursive fashion. 

Algorithm 2 
Input: a permutation group G; 

a prime p dividing the order of G; 
a Sylow p-subgroup S of G; 
maybe a bound on the total number of elements in 
the classes; 

Output: the G-rational classes, KRp, of p-elements; 
begin 

determine the rational classes of S; 
perform an analysis and determine list, away; 
KRp := empty; 
nogood := nullset; 
for i := 1 to length( list ) do 

if list[ i] is not in nogood then 
let g be the representative of the list[i]th rational 
class of S; 
if g is not in any class in KRp then 

add KrG(g) to KRp; 
if number of elements in KRp > bound then 
return; 
end 

else 
nogood := nogoo.d U away[ i]; 

end; 
end; 

end; 
end. 

4.3. Example. Consider the group PSp(4,7) and prime p=2. The Sylow sub- 
group S has order 28 and pc presentation 

a 1,, a2, aa, a8 I a2 = a2 = a2 = a2 = a= a 2= a2 = a = a8, 

[a2, a,] = a4, [a3, a,] = a5, [a3, a2] = [a5, a2] = a6, 

[a4, a3] = a6a8, [a5, a4] = a7a8, [a6, a,] = a7, 

[a6, a2] = [a6, a3] = [a6, a4] = [a6, a5] 

- [a7, a2] = [a7, a3] = a8 

S has 22 (nontrivial) rational classes with 7 distinct cycle structures as shown 
in Table 3. The values of list and away for this example are 
list is [ 1, 2, 11, 10, 18, 19, 20, 

21, 22, 13, 14, 12, 15, 3, 4, 16, 5, 17, 6, 7, 8, 9 ] 
away is [ { 1 }, { 2 }, { 11 }, { 10 }, { 18 }, { 19 }, { 20 }, 

{ 21 }, { 22 }, { 13 }, { 14 }, { 12 }, { 15 }, { 3 }, 
{ 16, 4 }, { 16 }, { 17, 5 }, { 17 }, { 6 }, { 7 }, { 8 }, { 9 } ] 
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TABLE 3. Rational classes of Sylow 2-subgroup of Sp(4,7) 

|Rational Class |Rep I Order ] Cent IN/CI I Square [Cycles II 
1 a8 2 8 2192 116 
2 a7 2 27 2200 
3 a, 2 25 2192 116 
4 a5 2 25 2200 
5 a4 2 25 2200 
6 a3a7 2 25 2200 
7 a2a7 2 25 2200 
8 a,a8 2 25 2200 
9 a2a3a5 2 24 2200 

10 a4a5 4 26 2 K(a7) 4100 
11 a6 4 26 2 K(a8) 4962418 
1 2 a4a5a8 4 26 2 K(a7) 4100 
1 3 a3 4 25 2 K(a8) 49624 18 
1 4 a2 4 25 2 K(a8) 4962418 
1 5 a1a6 4 24 2 K(a7) 4100 
1 6 a1a3 4 23 2 K(a5) 4100 
1 7 a1a2 4 23 2 K(a4) 4100 

1 8 a2a3 8 26 2 K(a6) 848 42 18 
19 a2a3a7 8 25 22 K(a6) 8484224 
20 a1a2a3 8 24 2 K(a4a5) 850 
21 a3a4 8 24 22 K(a6) 8484224 
22 a2a5 8 24 22 K(a6) 8484224 

There is one G-rational class still to find after processing the cycle structures. 
It is S-rational class 12 with representative a4a5a8. The computation of the 
Sylow subgroup takes 6 seconds; the conversion to a pc presentation takes 2.3 
seconds; the calculation of the classes of S takes 0.2 seconds; the analysis of the 
S-rational classes takes 12 seconds; the computation of the eight centralizers in 
G takes 15 seconds; and the five conjugacy tests take 10 seconds. 

4.4. Algorithm for Problem 2a. This section presents the determination of the 
classes within the rational class of z of order pr. This is done by calculating 
the Galois group, GalG(z). Let S be a Sylow p-subgroup of G containing 
z. For p = 2, the representative of the G-rational class may be chosen to 
satisfy Corollary 2.0.1(3), whence S determines the Galois group. So here 
we will handle the case where p > 2. Even in this case, we can choose the 
representative to satisfy Corollary 2.0.1(1) and know the p-part of the Galois 
group. 

The algorithm processes the subgroup lattice of Aut(Zpr) below Z(p-1) in 
a top-down breadth-first fashion. Each subgroup is cyclic, generated by some 
j mod pr, and corresponds to a conjugacy test of z with zi. Working top- 
down allows us to terminate at the first positive conjugacy test. The algorithm 
produces a list of integers j representing powers zi to guide the conjugacy 
testing, and a default set of generators for the Galois group (in 2/pr2). The 
default generators are the generators of Gals(z). The list is used to determine 
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the Z(p-l)-component of the Galois group. The integers j in the list are taken 
in turn until a positive conjugacy test in G between z and zJ occurs. This 
integer j (regarded mod pr) is the generator of the Z(p-l)-component. If there 
is no positive conjugacy test, then the component is trivial. 

The list is produced from a primitive root of pr. The lattice of subgroups of 
Aut(Zpr) below Z(p-1) is listed in a breadth-first fashion starting with Z(p-l) . 
This list is then refined to 

(1) eliminate subgroups whose order does not divide the order of G; 
(2) eliminate subgroups which do not lie above a known Galois group, such 

as GalNG(s)(g), and in this case the generators of the known Galois 
group are added to the default set; 

(3) eliminate those subgroups which do not lie below the preimage of 
GalG(gP) , in those cases where the strategy of ?4.2 means that GalG(gP) 
is known; 

(4) eliminate the subgroups whose order is divisible by m, if it is known 
that G contains no elements of order m. 

It is a matter of heuristics to determine in which order each layer of the 
subgroup lattice should be processed. One wants to process first the power most 
likely to give a positive conjugacy test. 

If x E G normalizes the element g, then leg(x)l divides lxl. So knowing 
the orders of elements in G may restrict the choice of subgroups of Aut(Z,), 
where n -I g, which could be isomorphic to GalG(g) . The relevant orders of 
elements would be known if the primes were processed from small to large. 

4.5. Examples. The group PSL(5, 3) has an element z of order 121. The 
subgroup lattice of Z110 is given in Figure 1, so the first list of powers to 
consider is [2, 4, 32, 112, 56, 81, 120]. However, the group order is not divisible 
by 113, so we only need to look at the Z(p-l)-component isomorphic to Z10. 
(The Sylow 1 1-subgroup also tells us that the Z11 -component is trivial.) Hence, 
the list to consider is [1 12, 81, 120]. Furthermore, if we have determined the 
classes of KrG(z11), we know the Z(p-l)-component is a subgroup of Z5 . 

Hence, the list to consider is [81]. (In this example, CG(z) = CG(z11), so 
we could avoid all conjugacy testing by checking whether the element x, which 
conjugates zll to its 4th power, conjugates z to its 81st power.) 

Z = (2) 

Z55 = (4) Z22= (32) Zio = (112) 

Z= (56) Z5 (81) Z2 = (120) 

FIGURE 1. Nontrivial subgroups of cyclic group Zllo = Aut(Z121) 
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5. ELEMENTS OF COMPOSITE ORDER 

In this section we assume that representatives of the rational classes of p- 
elements of G are known. Let z be such a representative of order pr. We 
treat the following problems: 

Problem. Find representatives y of the rational classes of G where jyI = prt, 
t is coprime to p and yt E KG(Z). 

Problem. Determine the classes within each rational class KrG(y), where IYI 
= prt, t is coprime to p and yt E KrG(z), by determining the Galois group 
GalG(Y) . 

5.1. Theory. Without loss of generality we can restrict the search to elements 
y with yt = z and hence y E CG(z) . Let C = CG(z) . Let T be the partition 
of Q determined by the cycles of z. Let f: C -- C,r N = ker(f), and 
C = C/N. Note that z E N, and that N is an abelian p-group, all of whose 
elements have order dividing pr [7]. Suppose that 

(t) y E G has order prt, t is coprime to p, and yt = Z. 

Then y--f(y) E C has order t. 

Theorem 5.1.1. Suppose Yl, Y2 satisfy (t). Then YI V-G Y2 if and only if 
Yl -T7 Y? 

Proof ( >) If Yg = Y2, then (yt)g = yt, so g E CG(z). Modulo N we have 

(Y1) =` 2,= Y12 C Y2_ 

(<=) Suppose g E C such that j7f = Y2 . Without loss of generality assume 
that Yi = y and Y2 = yn, for some n E N. Let L = (y, n) and Z = (z), 
which is central in L. The group L has a normal abelian Sylow p-subgroup 
N n L and a quotient (y-) which is cyclic of order t coprime to p. Hence, 
L is soluble. Furthermore, (yZ) and (ynZ) are Hall subgroups of order t 
of L/Z, and hence they are conjugate in L/Z. Hence, (y) and (yn) are 
conjugate in L. We can assume the conjugating element lies in N, and that it 
conjugates yN to yN. Hence, there exists n1 E N n L such that ynl = yn. 
ii 

The above result must be tempered by the fact that several class representa- 
tives which arise as roots of z may lie in the same rational class. The normalizer 
of z acts on C and C, and its action determines whether class representatives 
TI and Y2 of C give rise to the same rational class. 

Theorem 5.1.2. Suppose Yl, Y2 satisfy (t). Let g C NG(z) be an element 
conjugating z to zm, m # 1. Then Y1 -G Ym if and only if fg -c Y ? 

In the case where z is a p-element, p 0 2, the Galois group of z is cyclic. 
Let g E G induce a generator of GaIG(z). The action of g on C will fuse 
certain rational classes of C. These, therefore, each give rise to the same 
rational class of G. Furthermore, there will be some smallest power g' of 
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g such that y- E Krcy-j). The Galois group GaIG(Yi) is isomorphic to 
(E(l prt X Gal-C(Tl) tPr 

5.2. Algorithm. The first task is to lift the class representative y- from the quo- 
tient to an element of G such that it is actually a root of the p-element z. 
As the prime p and the order t of y- are coprime, this is straightforward. 
Algorithm 3 gives the details. 

Algorithm 3 
Input: a permutation group G; 

a p-element z E G of order pr; 

an element y- of order t, coprime to p, in CG(z)- 
quotient by N; 

Output: the class representative in yN which is a tth root of 
z; 

begin 
lift the element y- to an element y E G; 
let at+ bpl = 1; 

X := ybpr ; Xt = identity and x = yy-at E yN" 
result is xza; 

end. 
The classes within the G-rational class of y are determined by the action 

of the normalizing elements of z on C. This simultaneously tells us which 
C-classes are fused by the action. For p-elements, we have actual elements of 
G which generate the Galois group, so we can let them act explicitly. For the 
G-rational class of composite elements, all we require is to identify the Galois 
group as a subgroup of 2/(prt)2. Algorithm 4 outlines the method. The special 
cases are common and help us reduce the number of conjugacy tests in C. 

Algorithm 4 

Input: a permutation group G; 
a p-element z of G, p : 2, Kz! pr; 
the relevant rational classes of C, the quotient of 
CG(z) by N; 
a rational class representative 

- of order t, coprime 
to p, in C; 

Output: the rational class in G of tth roots of z in yN; 
the fusion of C-classes and rational classes to -y 
under the induced action of NG((z)); 

begin 
determine y such that yt = z 
in C compare cycle structure, class length, and Galois 
group, to determine the set, poss, of C-rational classes 
which could fuse to )7; 
g :_ generator of GalG(z); 
if g is identity then 

GaeG(Y) p po t - GalnC(-) Kr( t h 
else if poss = Kr(j-)}I and Kr(y7) has just one class 
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then 
GaIG(Y) Tp := GaIG(Z) tpr X Gal-()T t; 

else 
for i 1 to IGalG(z)I do 

h = gi 
locate class of yh in C; 

if class is in Kr-C(7) then break; end; 
end; 
GaIG(Y) pt:=(ez (h) tprt X Gal_C(y) Sp h 
and we know the integer m such that jTh E K(ym); 

end; 
end. 

For 2-elements, the structure of the Galois group, F = GalG(z), may be 
more complicated. However, if the group is cyclic then we proceed as in Algo- 
rithm 4. On the other hand, if F = (g1) x (g2) Z25 X Z2, then there are two 
possible cases for the subgroup H of F which normalizes y . If yg2 E Kr-(j7), 
then H K x Z2, where K is a subgroup of (gi), and so K can be computed 
by Algorithm 4. If j92 0 KrC(jT), then H is cyclic, and is generated either 
by some power gi or by a product g1g2. It can be computed by a modified 
version of Algorithm 4. 

The centralizer of y in G is computed within the preimage of Cc(y7). This 
could be improved by actually determining the action of this group on the kernel 
N, and computing the fixed points of y. 

5.3. Examples. Consider the group G = PSL(4,2) and the prime p = 5. G 
has one rational class 5A of p-elements. Let z be a representative of this 
class. Then C = (y) is cyclic of order 3, and hence, C has one rational 
class of elements of order t = 3. This rational class consists of two classes 
with representatives y) and )72. GalC(Y) is trivial. In G, the element z is 
normalized by g of order 4. In its action on C, g conjugates y7 to 2, SO 
GalG(y) = (6y(g)), and g conjugates y to y2. 

Consider the group G = PSp(4,7) and the prime p = 7. G has a rational 
class 7C of p-elements. Let z be a representative of this class. Then C has 
order 2372 and degree 64. It has four classes of 2-elements, as shown in Table 
4. 

TABLE 4. Rational classes of 2-elements in CpSp(4,7)(7C)-quotient 

Rational Class [ _C__(_) I Length 1 Cycles [ Fusion 

. 14F 23 49 232 
14C 227 14 23014 
14D 227 14 23014 
28C 22 98 416 1- 3 
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There is an element g E G of order 6 normalizing z. In its action on C, 
the element g fuses the C-rational classes of involutions 14C and 14D, so 
GalG(14CD) = (K14CD(g2)). 

6. ORDERING THE PRIMES 

This section treats another strategic aspect of the computation, namely: 

Problem. Determine the order in which the primes Pi dividing IGI should be 
processed. 

Our current strategy is to process them in increasing order of their exponent, 
and within the primes of equal exponent to process them in decreasing order. 
The rationale is that the p-elements, for the smaller primes p such as 2 and 
3, have larger, more complex centralizers, and so the recursive treatment of the 
quotients of their centralizers should be avoided, or attention restricted to a 
small set of element orders t. The primes with high exponent generally have 
corresponding Sylow subgroups with a large number of rational classes, and so 
the fusion of p-elements in G may be difficult to determine. 

The prime 2 is always last, in order to avoid p-elements with noncyclic 
Galois groups. 

The order is assigned a priori using just the group order. The order could 
be much more flexible. After computing the Sylow subgroups and analyzing 
their rational classes, we might have a much better idea of the relative "diffi- 
culty" of processing the primes and their centralizers. We could also select the 
obvious G-rational class representatives (based, for example, on their distinct 
cycle structures) and compute their centralizers and quotients. This would give 
a clearer picture of which quotients might be "difficult" to analyze. 

7. EXPERIMENTAL RESULTS 

This section considers the performance of the prototype implementation. 
A detailed breakdown of performance is given in order to identify the bot- 
tlenecks in the computations. It compares the inductive schema with known 
algorithms-the calculation of orbits under the action of conjugation for small 
groups; the random method for moderate-size permutation groups; the top- 
down approach for soluble groups given by a conditioned pc presentation [17, 
19]-to see whether the known algorithms should be used when analyzing the 
classes of a quotient which arises during the inductive schema. 

The prototype implementation comprises over 2000 lines of Cayley code. The 
information it stores about each rational class is (a) a representative element 
g; (b) the order n of the elements; (c) the cycle structure of the elements; 
(d) the list of powers 1, M2, ... , m, such that gm, are the representatives of 
the classes within the rational class; (e) the corresponding list of sets of integers 
{ nij} such that gnfl is in the same class as gm,-hence, the first set is the Galois 
group; (f) the centralizer of g; (g) the length of a class; (h) the generator(s) of 
the Galois group as integers mod n ; and (i) the generator(s) of the Galois group 
as elements of G, for the case when g is a p-element. The power map for the 
G-rational classes of p-elements is computed and stored, because it is useful in 
avoiding conjugacy tests when fusing the S-rational classes in G. However, we 
have not extended this to information of the power map for all classes. 
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TABLE 5. Performance of prototype implementation of induc- 
tive schema 

G IGI Degree Number [ Conjugacy Tests in G Total Time for 1 Total Random 
Time ~ l~ Method 

l KrG I KG I No. Total [Worst 4 pelts roots L Time Time 

Sp(4,2) 24325 15 10 10 7 0 0 7 2 13 8 

L(4,2) 26325 7 15 11 13 7 0 0 11 4 20 8 

L(3,4) 26325 7 21 7 9 11 0 0 12 0 16 12 

M24 210335 7 11 23 24 21 26 11 0 0 53 12 77 16 

U(3,3) 25337 28 9 13 11 0 0 10 3 17 18 

L(3,5) 253 5331 31 13 29 14 0 0 19 7 31 18 

L(5,2) 210325 7 31 31 17 26 12 2 2 68 9 87 18 

Sp(4,3) 26345 40 14 19 11 0 0 20 9 34 22 

L(4,3) 27365 13 40 24 28 64 11 3 96 17 122 52 

U(4,2) 26345 45 14 19 10 0 0 20 9 35 22 

L(3,7) 25327319 57 12 21 23 0 0 25 4 36 52 

Sp(6,2) 29345 7 63 29 29 25 0 0 55 23 84 102 
L(6,2) 215345 7231 63 39 59 57 2844 2719 3418 55 3485 248 

U(3,4) 263 5213 65 8 21 19 0 0 22 4 30 44 

L(3,8) 29327273 73 1 1 71 39 16 2 100 8 114 80 

Sp(4,4) 28325217 85 17 26 25 6 1 56 14 79 136 

L(4,4) 21234527 17 85 29 83 32 94 27 282 64 358 428 

HS 29 32 53 7 11 100 22 24 19 0 0 50 13 74 186* 
L(5,3) 293105 11213 121 48 114 216 106 2 716 81 810 988 

U(3,5) 2432537 126 1 1 13 25 0 0 28 5 39 92 

Sp(4,5) 26325413 156 24 33 29 9 2 62 35 104 234 

L(4,5) 27325613 31 156 29 48 24 480 62 749 50 809 1280 

U(5,2) 210355 11 165 29 46 31 366 213 478 52 539 180 

HS 2932537 11 176 22 24 21 3 1 65 18 100 176 

Co3 21037537 11 23 276 32 37 65 57 2 247 87 369 408 

U(4,3) 27365 7 280 16 19 50 78 21 187 31 222 290 

U(3,7) 273 7343 344 19 57 26 33 3 102 22 131 524 

Sp(4,7) 28325274 400 33 51 35 540 1 57 696 82 789 980 

G(2,4) 21233527 13 416 23 32 23 51 6 256 70 367 544 

U(3,8) 29347 19 513 11 27 16 97 28 239 30 275 600 

Sp(4,8) 212345 7213 585 27 82 52 433 89 1155 129 1297 4000 

U(3,9) 25365273 730 19 91 105 1978 88 2018 90 2115 2446 

U(4,4) 2123253 13 17 1105 30 94 90 18962 4006 19239 449 19703 29500 

U(3,1 1) 25325 113 37 1332 19 47 50 1204 75 1299 176 1484 8472 

Tits 211335213 1755 16 22 16 260 48 703 185 1153 3032 

Suzuki 21337527 11 13 1782 36 43 43 1657 184 2720 944 3842 6248 

Held 21033527317 2058 25 33 35 1816 135 2786 755 3851 13041* 

U(3,13) 243 72133157 2198 27 183 69 11045 1275 11428 571 12009 44285* 

Co2 21836537 11 23 2300 56 60 40 2606 253 7370 1320 9440 8700 

G(2,5) 2633567 31 3906 36 44 52 1876 120 4190 3234 8133 28131 

Table 5 and Table 6 (next page) present the performance of the prototype. 
Table 5 gives factual information about the group-including the order, degree, 
number of rational classes, number of classes-and then an overview of the 
prototype's performance-the number of actual conjugacy tests in G, the total 
time required for these conjugacy tests, and the worst single time for a conjugacy 
test; the total time taken to determine the classes of p-elements of G (including 
the computation of the Sylow subgroup), the time taken to compute the classes 
of composite elements; and then the total time taken by the prototype. For com- 
parison, the last column shows the total time required by the random method 
to compute the conjugacy classes-an asterisk indicates that the method failed 
to find all the classes after considering 5000 random elements. Each individual 
time for a conjugacy test is rounded down. Table 6 breaks down the total times 
for pelts and roots according to the primes (and lists the primes in the order in 
which they were processed). All times are in seconds of CPU time on a Sun 
Sparcstation. 
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TABLE 6. Breakdown of performance by primes of prototype 
implementation 

G Total Pnmes in order as processed 
l Time pnme p pelts time, roots time _ 

l_ 
l 

L(3,5) 31 31 5 0 3 1 4 5 8 3 2 5 0 
L(3,7) 36 19 2 0 3 3 2 7 16 2 2 4 0 
L(3,8) 114 73 10 0 7 34 8 3 3 0 2 53 0 
L(4,2) 20 7 1 0 5 1 1 3 3 3 2 6 0 
L(4,3) 122 13 3 0 5 1 2 3 75 15 2 17 0 
L(4,4) 358 17 4 2 7 4 4 5 94 26 3 35 32 2 145 0 
L(4,5) 809 31 8 0 13 5 2 3 13 29 5 706 19 2 17 0 
L(5,2) 87 31 4 0 7 5 3 5 2 1 3 16 5 2 41 0 
L(5,3) 810 13 6 13 5 2 8 11 29 0 3 630 60 2 49 0 
L(6,2) 3485 31 5 0 5 1 10 7 70 14 3 2805 31 2 537 0 
U(3,5) 39 7 2 0 3 4 3 5 1 7 2 2 5 0 
U(3,7) 131 43 10 0 3 3 13 7 53 9 2 36 0 
U(3,8) 275 19 17 0 7 24 7 3 55 23 2 143 0 
U(3,9) 2115 73 41 0 5 393 63 3 1534 27 2 50 0 
U(3,1 1) 1484 37 93 0 5 105 52 3 77 96 1 1 933 28 2 91 0 
U(3,13) 12009 157 127 0 3 40 212 7 9743 312 13 1379 47 2 139 0 
U(4,3) 222 7 6 0 5 6 0 3 147 31 2 28 0 
U(4,4) 19703 17 51 12 13 73 14 3 77 206 5 18686 217 2 352 0 
U(5,2) 539 1 1 3 0 5 2 3 3 423 49 2 50 0 
Sp(4,4) 79 1 7 2 0 5 1 3 8 3 4 6 2 37 0 
Sp(4,5) 104 13 4 0 3 8 19 5 34 16 2 16 0 
Sp(4,7) 789 5 14 0 3 23 44 7 601 38 2 58 0 
Sp(4,8) -1297 13 23 7 5 10 0 7 241 53 3 149 79 2 732 0 

TABLE 7. Comparative times for small groups 

G I GjI I Degree JJ Action || Random If Inductive | 

L(2,2) 6 3 0.0 0.1 2 
L(2,3) 12 4 0.0 1.1 2 
L(2,4) 60 5 0.1 1.4 3 
L(2,5) 60 6 0.1 1.5 4 
L(3,2) 168 7 0.1 1.7 4 
L(2,7) 168 8 0.1 1.8 4 
L(2,9) 360 10 0.3 2.1 6 
L(2,8) 504 9 0.5 2.0 6 
L(2,11) 660 12 0.9 2.3 7 
PSp(4,2) 720 15 0.9 4.4 13 
L(2,13) 1092 14 1.4 2.5 8 
L(2,17) 2448 18 3.9 3.2 8 
L(2,19) 3420 20 6.3 3.4 10 
L(2,16) 4080 17 7.4 3.2 12 
L(3,3) 5616 13 8.7 3.0 11 
L(2,23) 6072 24 13.4 4.2 12 
L(2,31) 14880 32 43.2 5.7 15 
L(4,2) 20160 15 29.3 3.6 20 
L(3,4) 20160 21 40.7 6.5 16 
PSp(4,3) 25920 40 75.8 10.9 34 
L(2,32) 32736 33 125 6.8 29 
L(2,64) 262080 65 480 48.5 77 
L(3,5) 372000 31 1445 8.5 31 
PSp(4,4) 979200 85 10200 40.2 79 
L(2,128) 2097024 129 36400 121 266 

The results in Table 5 demonstrate that the number of actual conjugacy 
tests being performed is under control (except in the cases of PSL(5, 3) and 
PSU(3, 9), where the Sylow 3-subgroup causes problems), and that the major 
performance bottleneck is the very long time required by some individual cases 
of the conjugacy test algorithm. Indeed, for PSU(4, 4) there are four conju- 
gacy tests between elements of order 5 where each test takes over 3800 seconds. 
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TABLE 8. Comparative times for soluble permutation groups 

ft G IGI [ Degree 11 PCP || Random || InductiVe JJ 
S3 23 3 0.2 0.0 2.2 
S4 233 4 0.4 0.1 3.7 
S3 ?S3 2434 9 3.2 24.2 26.2 
S3 ?S4 2735 12 8.7 45.2 81.2 
S3 ? V4 26 34 12 6.9 89.5 94.4 
S4? S3 21034 12 12.8 196 149 
S4 ? V4 21434 16 53.5 5000 875 
S4 ? S4 21535 16 64.3 5280 775 
V4 ? S4 2113 16 14.8 7570 990 

The times in Table 7 compare the performance of known algorithms with 
the prototype of the inductive schema when working in a small group. The 
times are biased towards the known algorithms, as they only compute classes 
and not rational classes. It is further biased in their favor as the algorithms are 
implemnented in C. 

The times in Table 8 consider soluble permutation groups and compare the 
known algorithms with the inductive schema. The times in the PCP column 
include the time to compute the conditioned pc presentation, to compute the 
classes using the presentation, and to lift each class representative back to the 
permutation group. The information about rational classes, centralizers, and 
Galois groups is not computed and therefore not included in the times in the 
PCP column. 

8. CONCLUSION AND FURTHER WORK 

The major problems brought to light by the prototype implementation are 

* the existence of cases where the backtrack algorithm for testing conju- 
gacy in a permutation group takes a very long time; 

* the number of conjugacy tests required when the group has a large Sylow 
p-subgroup, especially when p is not the last prime processed. 

The first problem is fundamental, and somewhat outside the scope of future 
work on the schema itself. The prototype implementation in Cayley cannot 
make use of some features of the algorithm of [1]. An implementation in C 
could use the existing facilities of the algorithm which take advantage of known 
subgroups of the centralizers CG(gl) and CG(g2) when testing conjugacy of 
g, and g2. These facilities can not be accessed from Cayley, so the prototype 
implementation cannot use the fact that it knows such subgroups as CG(gl) 
and CS(g2) when fusing p-elements from a Sylow subgroup S. 

The second problem might be addressed in several ways using algorithms of 
[2, 10, 11, 15, 17] to compute normalizers and to compute in soluble groups. 
When S is abelian, then the fusion in G is determined by the fusion in the 
normalizer NG(S), and in cases where the normalizer is soluble, one could 
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convert to a conditioned pc presentation and easily compute the classes of the 
normalizer. (Note that for p = 2, NG(S) is always soluble.) Similar techniques 
in NG(S) or NG(H), where H is a normal (elementary abelian) subgroup of 
S, can also be applied. In general, they will not determine the fusion in G com- 
pletely, but may help to greatly restrict the number of candidate elements for the 
representatives of the G-rational classes. Locating the appropriate subgroups 
H may require much more analysis of the structure of S. 

Some of the most expensive conjugacy tests occur when determining the 
classes within a rational class of p-elements. Hence, it might be beneficial to 
study the order in which the subgroup lattice of Aut(Z,) should be processed. 
One wants to find positive answers to whether the representative g is conjugate 
to gmi, as these conjugacy tests tend to be faster than exhaustively determining 
that no element conjugates g to gmi. (A similar remark could be made about 
testing conjugacy of a p-element against existing G-rational classes, when more 
than one G-rational class is compatible with respect to cycle structures, etc.) 

The second problem would also benefit from a parallel implementation of the 
schema because then for each prime we would know a bound on the number of 
elements in the classes. 

Minor gains could be made through determining when to switch from the 
inductive schema to known methods of determining the classes. In cases where 
C is soluble, or small, one could switch. 

The inductive schema is successful in that it requires only a small number of 
conjugacy tests in the permutation group G. Its general performance, when ap- 
plied to groups of large order and degree, is far superior to the random method. 
The effort expended on finding the G-rational classes of composite elements is 
generally small, and also a small proportion of the total time. The effort of find- 
ing the G-rational classes and classes of p-elements can be high if the order of 
the Sylow subgroup is large. It may require many conjugacy tests and consume 
the bulk of the total time. However, the main impediment to better perfor- 
mance is the cost of individual conjugacy tests in permutation groups using the 
backtrack algorithm. 
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